
Efficient Deep Learning Inferencing in the Cloud using
Kubernetes with Smart Provisioning of Arm Nodes

Anne Holler
Advisor
Elotl

Deep Learning (DL) models are being successfully applied in a variety of fields. Managing DL
inferencing for diverse models presents cost and operational complexity challenges. The
resource requirements for serving a DL model depend on its architecture, and its prediction
load can vary over time, leading to the need for flexible resource allocation to avoid
provisioning for the maximum amount of resources needed at peak load. Using the cloud to
allocate resources flexibly adds operational complexity to obtain minimum-cost resources
matching model needs from the large and ever-evolving sets of instance types. Selecting
minimum-cost cloud resources is particularly important given the high cost of x86+GPU
compute instances, which are often used to serve DL models.

This talk describes an approach to efficient DL inferencing on cloud Kubernetes (K8s) cluster
resources. The approach combines two kinds of right-sizing. The first is right-sizing the
inference resources, using Elotl Luna smart node provisioner to add right-sized compute to
cloud K8s clusters when needed and remove it when not. The second is right-sizing the
inference compute type, using cloud Ampere A1 Arm compute with the Ampere Optimized
AI library, which can provide a price-performance advantage on DL inferencing relative to
GPUs and to other CPUs.

The talk shows the benefits of the approach using inference workloads running on
auto-scaled TorchServe deployments. For cloud K8s clusters from two vendors, the cost and
operational complexity of right-sizing is compared against two non-right-sized approaches.

Efficient Deep Learning Inferencing
in the Cloud using Kubernetes

with Smart Provisioning of Arm Nodes

Anne Holler, Advisor, Elotl
Twitter: @holler_anne

3

Deep Learning Inferencing at Scale: Resourcing Challenges
Deep Learning (DL) models successfully applied in many fields
• Including image and natural language processing

However, managing DL inferencing at scale, often run in the cloud
for resource flexibility, presents challenges

• Cost Challenges
• DL models differ greatly in serving resources needed, particularly wrt system memory to store weights

• Economical to use cloud instance shapes that are right-sized for models
• In production, a model’s prediction load can vary significantly according to time-of-day and other factors

• Desirable to automatically adjust the number of cloud serving instances to match current load
• x86+GPU compute instances, often used to serve DL models, are costly compared to CPU-only instances

• Worthwhile to evaluate if an inference use case can be handled well on thriftier CPU-only instances

• Operational Complexity Challenges
• Selecting currently-available minimum-cost cloud resources

• that match inferencing needs, which can change with model updates
• from large and ever-evolving instance types, whose availability may vary over time

4

Deep Learning Inferencing at Scale: Talk Overview

An approach to managing the cost & operational complexity of DL inferencing at scale:
Given cloud resources, organized in a Kubernetes (K8s) cluster for production container
orchestration, the approach combines:

We show the benefits of the approach by comparing its cost & operational complexity against
non-right-sized resource provisioning together with non-right-sized compute type (x86+GPU)

• Experimental runs were performed on an Oracle Cloud (OCI) OKE K8s cluster and on a Google Cloud (GCP) GKE K8s cluster

● Right-sizing inference resources
• Use Elotl Luna smart node provisioner
• Adds right-sized compute to cloud K8s cluster when needed and removes it when not

● Right-sizing inference compute type
• Use Ampere A1 Arm compute along with Ampere Optimized AI library instance type
• Can provide a price-performance advantage on DL inferencing relative to GPUs & other

CPUs for low-latency low-batch-size use cases.

https://kubernetes.io/
https://www.oracle.com/cloud/cloud-native/container-engine-kubernetes/
https://cloud.google.com/kubernetes-engine
https://www.elotl.co/luna.html
https://solutions.amperecomputing.com/solutions/oci?referrer=oracle
https://solutions.amperecomputing.com/solutions/ampere-ai

5

Right-Sizing Inference Resources
• Right-sizing inference resources leverages Elotl Luna

• Luna adds nodes to cloud K8s for pending placements according to bin-packing vs bin-selection policy
• Luna is suitable for handling any bursty workloads running on cloud K8s

• Previously reported on Luna’s mgmt of x86+GPU compute for DL training workloads
• Illustrated by validating Ludwig DL AutoML running on Ray Tune for tabular & text classification datasets

• Simple to adapt Luna to managing right-sized compute for DL inference workloads
• Enabled Luna option to consider Arm instances for node provisioning in addition to x86 instances
• Tuned bin pack vs bin selection policy to leverage granular shapes available for Ampere A1 compute
• Added support for running Luna on Arm, to allow use of Arm-only K8s clusters, when more efficient

https://www.cncf.io/blog/2022/02/15/managing-public-cloud-resources-for-deep-learning-training-experiments-and-lessons-learned/
https://github.com/ludwig-ai/ludwig
https://github.com/ray-project/ray
https://medium.com/predibase/ludwig-automl-for-deep-learning-cf64de9d49c8
https://medium.com/predibase/ludwig-automl-for-text-classification-7c1759f3b150

6

Right-Sizing Inference Compute Type
Right-sizing inference compute uses Ampere A1 Arm w/Ampere Optimized AI library
• CPU system tuned for DL inference performance without accuracy degradation.

Latest MLCommons datacenter inference benchmarks show GPUs delivering highest
absolute performance for tested scenarios; however, YMMV
• Low-latency small-batch-size cloud server scenarios can run more cost-efficiently on CPU-only systems (see here)

Pre-deployment tests established CPU-only deployment worked well for our use case
• For right-size runs, no GPU requested; Luna chose Ampere A1 as less expensive than x86 CPU
• Can be more performant; e.g. Article shows Ampere A1 outperforming x86 CPU shape on resnet_50_v15

model at fp32, same cost delivering >1.5x AMD's best E4 OCI shape & >2x Intel's Standard3 OCI shape

https://mlcommons.org/en/inference-datacenter-20/
https://solutions-portal-cms-production-bucket.s3.us-east-2.amazonaws.com/CPU_AI_Inference_in_the_Cloud_82f9ac59ba.pdf?updated_at=2022-06-15T16:13:55.010Z
https://learncloudnative.com/blog/2022-03-16-running_ai_on_ampere_instance

7

Demonstrating Benefits of Right-Sizing Inference

• Run on tunable DL inference system, deployable on cloud K8s & including autoscaling
• Chose TorchServe, high-performance full-featured tool for serving PyTorch models

• Supports tuning resource-related settings for each of the set of models being served
• TorchServe can be deployed on Cloud-based K8s clusters

• Description of use on AWS here, which is source of architecture graphic shown below
• TorchServe includes load-triggered AutoScaling, via a K8s Horizontal Pod Autoscaler

• HPA changes the number of DL serving replicas behind a TorchServe load-balancing endpoint

https://github.com/pytorch/serve
https://github.com/pytorch/serve/blob/master/kubernetes/README.md
https://aws.amazon.com/blogs/machine-learning/deploying-pytorch-models-for-inference-at-scale-using-torchserve/
https://github.com/pytorch/serve/blob/master/kubernetes/autoscale.md

8

Right-Sizing Inference Expt: Workload Models

• Run workload of serving 2 standard DL models, shown in table below
• Note large difference in number of weights between models

Model Task Weights

vgg16 Image Classification 138M

squeezenet1_1 Image Classification 1.2M

9

Right-Sizing Inference Expt: Workload Deployment

• Run with each model handled by a separate TorchServe deployment to allow:
• Each TorchServe worker replica size to be customized to model size
• Each TorchServe worker replica count to scale for model load independently

10

Right-Sizing Inference Expt: Configurations Compared

• We compare the following three configurations

• Max-sized configuration
• Static inference configuration with maximum-count maximum-sized x86+GPU compute nodes
• Operational model: Kubernetes Cluster set up to handle peak inference load for both models

• Dynamic fixed-size configuration
• Dynamic inference configuration with variable-count fixed/maximum-sized x86+GPU compute nodes
• Operational model: K8s Cluster Autoscaler w/x86+GPU node pool defined

• Right-sized configuration
• Dynamic inference configuration with variable-count right-sized Ampere A1 compute nodes
• Operational model: Luna K8s smart node provisioner adding/removing right-sized cost-efficient nodes

11

Right-Sizing Inference Expt: Load and Scaling Range

• To generate each model’s peak load
• hey loadgen running 150 parallel threads requesting image classification on kitten_small.jpg

• TorchServe is configured for low latency, w/its worker and netty threads set to 1

• TorchServe Horizontal Pod Autoscaler
• Set to scale up replica count based on CPU utilization >50%

• Note: CPU utilization trigger works for both CPU-only & GPU-enabled pods
• Set maxReplicas to maintain 99 percentile end-to-end latency <=~0.5 seconds at our peak load

https://github.com/rakyll/hey

12

OKE Right-Sizing Inference Expt: Computing Resources
• K8s has 2 statically-allocated Ampere Arm CPU nodes for cluster mgmt, including Luna

• Each is VM.Standard.A1.Flex shape w/2 OCPUs and 32GB [each: $0.0680/hr]

• TorchServe
• Each model’s TorchServe deployment set to create minimum of 1 worker pod
• Note: Squeezenet1_1 worker pod memory size needed increase when GPU requested

Configuration Vgg16
worker pod
size

Vgg16 node
instance type

Vgg16 max
worker pod
count

Squeezenet1_1
worker pod size

Squeezenet1_1
node instance
type

Squeezenet1_
1 max worker
pod count

Max-sized 400m, 4GB,
1GPU

VM.GPU2.1
(P100 w/16GB)

3 400m, 2GB,
1GPU

VM.GPU2.1 3

Dynamic
fixed-size

400m, 4GB,
1GPU

VM.GPU2.1
[$1.275/hr]

3 400m, 2GB,
1GPU

VM.GPU2.1 3

Right-sized 400m, 4GB VM.Standard.A1.
Flex w/1 OCPU,
4GB [$0.0160/hr]

4 400m; 1GB VM.Standard.A1.
Flex w/1 OCPU,
1GB [$0.0115/hr]

4

13

OKE Right-Sizing Inference Expt: Accuracy & Latency
Validation• Runs on right-sized and x86+GPU nodes produced same prediction results

• Table shows 95 & 99 percentile E2E latency for models simultaneously handling peak load
• Run on right-sized and on x86+GPU configurations
• Both models meet desired E2E latency target (<=~0.5 secs) for presented workload and set up

Model Right-sized 95%
latency seconds

Right-sized 99%
latency seconds

x86+GPU 95%
latency seconds

x86+GPU 99%
latency seconds

vgg16 0.2243 0.2703 0.2453 0.4457

squeezenet1_1 0.2176 0.2672 0.2975 0.4225

14

OKE Right-Sizing Inference Expt: Cost Compared
• Table presents costs per hour for three configurations at four operating points

• Figure shows ratios of Dynamic fixed-size and Right-sized costs to Max-sized costs
• When both models not at peak, Dynamic fixed-size configuration cost < Max-sized configuration cost
• In all cases, Right-sized configuration << Max-sized configuration cost, by nearly two orders magnitude
• Note: legacy VM.GPU2.1(P100)=$1.275/hr; current generation VM.GPU3.1(V100)=$2.950/hr

Load Max-sized
$/hr

Dynamic
fixed-sized $/hr

Right-sized
$/hr

Both models idle 7.7860 2.6860 0.1635

Both models peak 7.7860 7.7860 0.2460

Vgg16 idle,
squeezenet peak

7.7860 5.2360 0.1980

Vgg16 peak,
squeezenet idle

7.7860 5.2360 0.2115

15

GKE Right-Sizing Inference Expt: Computing Resources
• K8s has 2 statically-allocated Ampere Arm CPU nodes for cluster mgmt, including Luna

• Each is t2a-standard-2 shape w/2 VCPUs and 8GB [each: $0.077/hr]

• TorchServe
• Each model’s TorchServe deployment set to create minimum of 1 worker pod
• Note: Squeezenet1_1 worker pod memory size needed increase when GPU requested

Configuration Vgg16
worker pod
size

Vgg16 node
instance type

Vgg16 max
worker pod
count

Squeezenet1_1
worker pod size

Squeezenet1_1
node instance
type

Squeezenet1_1
max worker
pod count

Max-sized 400m, 4GB,
1GPU

n1-standard-2 +
T4 GPU (16GB)

7 400m, 3GB,
1GPU

n1-standard-2 +
T4 GPU

8

Dynamic
fixed-size

400m, 4GB,
1GPU

n1-standard-2 +
T4 GPU
[$0.445/hr]

7 400m, 3GB,
1GPU

n1-standard-2 +
T4 GPU

8

Right-sized 400m, 4GB T2a-standard-2
[$0.077/hr]

4 400m; 1GB T2a-standard-1
[$0.0385/hr]

4

16

GKE Right-Sizing Inference Expt: Accuracy & Latency Validation

• Runs on right-sized and x86+GPU nodes produced same prediction results

• Table shows 95 & 99 percentile E2E latency for models simultaneously handling peak load
• Run on right-sized and on x86+GPU configurations
• Both models close to desired E2E latency target (<=~0.5 secs) for presented workload and set up

Model Right-sized 95%
latency seconds

Right-sized 99%
latency seconds

x86+GPU 95%
latency seconds

x86+GPU 99%
latency seconds

vgg16 0.3011 0.5153 0.3142 0.6095

squeezenet1_1 0.2996 0.4053 0.3335 0.5850

17

GKE Right-Sizing Inference Expt: Cost Compared
• Table presents costs per hour for three configurations at four operating points

• Figure shows ratios of Dynamic fixed-size and Right-sized costs to Max-sized costs
• When both models not at peak, Dynamic fixed-size configuration cost < Max-sized configuration cost
• In all cases, Right-sized configuration << Max-sized configuration cost, by nearly two orders magnitude

Load Max-sized
$/hr

Dynamic
fixed-sized $/hr

Right-sized
$/hr

Both models idle

6.8290 1.0440 0.2695

Both models
peak 6.8290 6.8290 0.6160

Vgg16 idle,
squeezenet peak

6.8290 4.1590 0.3850

Vgg16 peak,
squeezenet idle 6.8290 3.7140 0.5005

18

Right-Sizing Inference Expts: Operational Complexity Compared

• Operational complexity analysis below; entries marked “no” involve manual updates
• Note: OCI discontinuing legacy VM.GPU2.1 is example of offerings update
• Right-sized configuration handled all three kinds of system changes automatically

Configuration Automatically adapts to
TorchServe max worker
count needed changes

Automatically adapts
to TorchServe worker
size changes

Automatically
handles cloud
instance availability
& offerings changes

Max-sized no no no

Dynamic fixed-size yes no no

Right-sized yes yes yes

19

Right-Sizing Inference: Conclusion

• Summary
• Have shown that Right-sizing

• Right-sizing inference resources via using Elotl Luna
• Right-sizing inference compute shapes by choosing Ampere A1 Arm w/Ampere Optimized AI library

• Can reduce cloud resource costs significantly, measured at 4 operating points for 2 cloud vendors
• While avoiding operational complexity for changes in model serving resource needs & cloud offerings

• But wait, just one more thing:
• Note that K8s cluster that hosts DL serving workloads may be one of a K8s cluster set

• E.g., there may be a separate K8s cluster comprising GPU nodes that hosts DL training workloads
• Elotl Nova, a K8s service for cluster selection, can place K8s workloads into the appropriate cluster

• Luna and Nova can be used together to simplify K8s resource management

https://www.elotl.co/nova.html

20

Please Give Right-Sizing a Try on Your Workloads!

Here are resources to get you started:
● Elotl Luna

● Ampere Computing

● OCI Ampere A1 Compute, OCI OKE

● GCP Ampere A1 Compute, GCP GKE

● OCI Blog: Deep Learning inferencing at scale with Oracle Cloud A1 Compute with Elotl Luna

Thanks! Twitter: @holler_anne

https://www.elotl.co/luna.html
https://amperecomputing.com/
https://www.oracle.com/cloud/compute/arm/
https://www.oracle.com/cloud/cloud-native/container-engine-kubernetes/
https://cloud.google.com/compute/docs/instances/arm-on-compute
https://cloud.google.com/kubernetes-engine
https://blogs.oracle.com/cloud-infrastructure/post/oracle-cloud-ampere-a1-compute-on-kubernetes-with-elotl-luna

