Introduction
Are you tired of juggling multiple Kubernetes clusters, desperately trying to match your ML/AI workloads to the right resources? A smart K8s fleet manager like the Elotl Nova policy-driven multi-cluster orchestrator simplifies the use of multiple clusters by presenting a single K8s endpoint for workload submission and by choosing a target cluster for the workload based on placement policies and candidate cluster available capacity. Nova is autoscaler-aware, detecting if workload clusters are running either the K8s cluster autoscaler or the Elotl Luna intelligent cluster autoscaler.
In this blog, we examine how Nova policies combined with its autoscaler-awareness can be used to achieve a variety of "right place, right size" outcomes for several common ML/AI GPU workload scenarios. When Nova and Luna team up you can:
|