

Efficient Deep Learning Inferencing on Cloud Kubernetes Clusters using Smart Arm Node Provisioning

OMMUNITY GROUPS

Anne Holler, Advisor, Elotl

Efficient DL Inferencing: Resource Mgmt Challenges

Deep Learning (DL) models are being successfully applied in many fields

Most notably image and natural language processing

However, managing DL inferencing at scale, often run in the cloud for resource flexibility

• Presents cost & operational complexity challenges

Efficient DL Inferencing: Cost Challenges

DL models differ greatly in serving resources needed, particularly wrt system memory for weights
Economical to use cloud instance shapes that are right-sized for models

In production, model's prediction load can vary significantly according to TOD & other factors

• Desirable to automatically adjust the number of cloud serving instances to match current load

x86+GPU compute instances, often used to serve DL models, are costly compared to CPU-only

• Worthwhile to evaluate if an inference use case can be handled well on thriftier CPU-only instances

Efficient DL Inferencing: Operational Complexity Challenges

Selecting currently-available minimum-cost cloud resources that match inferencing needs

- From large and ever-evolving set of instance types, whose availability may vary over time
- When inferencing resource needs can change with model updates

Efficient DL Inferencing: Talk Overview

Present approach to managing cost & operational complexity of DL inferencing at scale

Given cloud resources, organized in a <u>Kubernetes</u> (K8s) cluster for production container orchestration, the approach combines:

- Right-sizing inference resources
 - Use <u>ElotI Luna</u> smart node provisioner
 - Luna adds right-sized compute to cloud K8s cluster when needed and removes it when not
- Right-sizing inference compute type
 - Use CPU, can provide a price-performance advantage on DL inferencing relative to GPU for low-latency low-batch-size use cases.
 - Use Arm64 CPU, can yield price-performance advantage over x86 CPU

arm

Efficient DL Inferencing: Talk Overview, Con't

Evaluate cost & operational complexity benefits of the right-sized approach

Compared w/2 common non-right-sized approaches running on:

• 3 kinds of public cloud K8s clusters

- Oracle Cloud (OCI) <u>OKE</u> K8s cluster
- Google Cloud (GCP) <u>GKE</u> K8s cluster
- Amazon Web Services (AWS) <u>EKS</u> K8s cluster
- 2 kinds of ARM compute
 - Ampere <u>A1</u> Arm compute
 - AWS Graviton2 Arm compute

AMPERE

Efficient DL Inferencing: Talk Outline

Efficient DL Inferencing: Resource Mgmt Challenges, Cost Challenges, Complexity Challenges

Efficient DL Inferencing: Talk Overview

Efficient DL Inferencing: Right-Sizing Approach

- Right-sizing Inference Resources: Use Luna Smart Provisioner
- Right-sizing Inference Compute Type: Use Arm CPU Compute

Experimental Setup for Evaluating Benefits of Right-Sizing Approach vs 2 other Sizing Approaches

Experimental Results for Sizing Approaches on 3 Cloud K8s Clusters

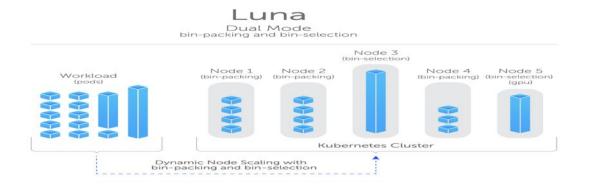
Conclusion: Summary and One More Thing

Right-Sizing Inference Resources: Use Luna Smart Provisioner

Right-sizing inference resources leverages Elotl Luna smart provisioner to add/remove nodes

Luna adds nodes to cloud K8s for pending placements, using bin-packing vs bin-selection policy

- Uses bin-packing for pods w/smaller resource requests
 - Node is allocated for hosting multiple pods
- Uses bin-selection for pods w/larger resource requests or w/special requests such as GPU
 - Node is allocated for hosting single pod, node is right-sized for the pod's resource request



Right-Sizing Inference Resources: Adapting Luna for DL Serving

Luna smart node provisioner suitable for handling any bursty workloads running on cloud K8s

- Previously <u>reported</u> on Luna's mgmt of x86+GPU compute for DL training workloads
 - Used Luna to validate <u>Ludwig</u> DL AutoML running on <u>Ray</u> Tune for <u>tabular</u> & <u>text classification</u> datasets

Simple to adapt Luna to managing right-sized compute for DL inference workloads

- Enabled Luna option to consider Arm instances for node provisioning in addition to x86
- Tuned bin-packing vs bin-selection policy to leverage granular shapes available for Arm
- Added support to run Luna on Arm, to allow Arm-only K8s clusters, when more efficient

Different Luna on Arm LOL

Right-Sizing Inference Compute Type: Use Arm CPU Compute

While the latest MLCommons datacenter inference <u>benchmarks</u> show GPUs delivering highest absolute performance for tested scenarios, YMMV

Low-latency small-batch-size cloud server scenarios can run more cost-efficiently on CPU systems (see <u>here</u>)

Pre-deployment tests for our use case established that CPU-only deployment worked well

- For right-size runs, no GPU resource requested; Luna chose Arm CPU as less expensive than x86 CPU
- Arm can be more performant; e.g. <u>Article</u> shows Ampere A1 outperforming x86 CPU shapes on resnet_50_v15 model at fp32, same cost delivering >1.5x AMD's best E4 OCI shape & >2x Intel's Standard3 OCI shape

Right-sizing inference compute uses 2 kinds of Arm CPU compute

- **OKE,GKE: Ampere A1** + <u>Ampere Optimized AI</u> library is tuned for CPU DL inference w/o accuracy degradation.
- AWS: Graviton2 is tuned for best price performance in AWS for variety of workloads, including DL inference.

Efficient DL Inferencing: Talk Outline

Efficient DL Inferencing: Resource Mgmt Challenges, Cost Challenges, Complexity Challenges

Efficient DL Inferencing: Talk Overview

Efficient DL Inferencing: Right-Sizing Approach

Experimental Setup for Evaluating Benefits of Right-Sizing Approach

- Workload System, Models, Deployment, Load & Scaling Range
- Sizing Approaches (Right-sized, Max-sized, Dynamic fixed-size) Compared

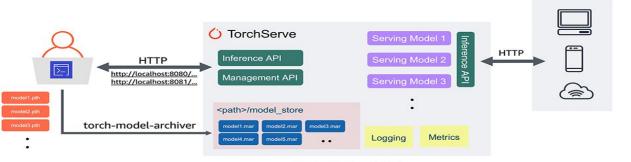
Experimental Results for Sizing Approaches on 3 Cloud K8s Clusters

Conclusion: Summary and One More Thing

Evaluating Benefits of Right-Sizing Inference: Workload System

Wanted to use tunable DL inference system, deployable on cloud K8s & including autoscaling

- Chose <u>TorchServe</u>, high-performance full-featured open source tool for serving PyTorch models
 Supports tuning resource-related settings for each of the set of models being served
- TorchServe supports deployment on <u>Cloud-based K8s clusters</u>
 - Description of use on AWS <u>here</u>, which is source of architecture graphic shown below
- TorchServe includes load-triggered <u>AutoScaling</u>, via a K8s Horizontal Pod Autoscaler
 - HPA changes number of DL serving replicas behind TorchServe load-balancing endpoint



torchserve --start

Right-Sizing Inference Expt: Workload Models

Run workload of serving 2 standard DL models, shown in table below

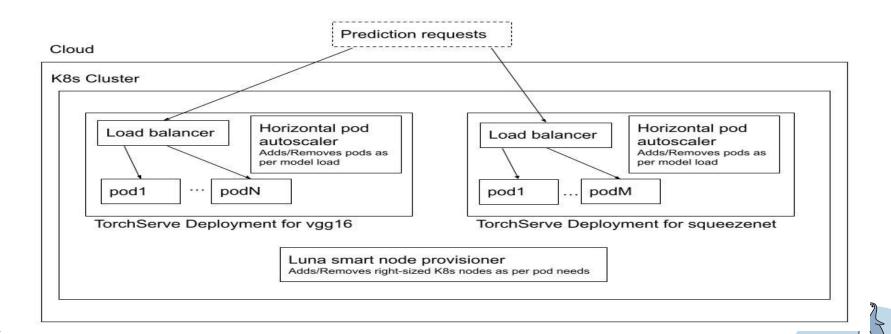
• Note large difference in number of weights between models

Model	Task	Weights
vgg16	Image Classification	138M
squeezenet1_1	Image Classification	1.2M

Right-Sizing Inference Expt: Workload Deployment

Run with each model handled by a separate TorchServe deployment to allow:

- Each TorchServe worker replica size to be customized to model size
- Each TorchServe worker replica count to scale for model load independently



Right-Sizing Inference Expt: Workload Load & Scaling Range

To generate each model's peak load

• <u>hey</u> loadgen running 150 parallel threads requesting image classification on kitten_small.jpg

TorchServe is configured for low latency, w/its worker and netty threads set to 1

TorchServe Horizontal Pod Autoscaler

- Set to scale up replica count based on CPU utilization >50%
 - Note: CPU utilization trigger works for both CPU-only & GPU-enabled pods
- Set maxReplicas to maintain 95 percentile E2E latency <=~0.5 seconds at our peak load

anne@cloudshell:~/serve (elotl-dev) & curl -X POST http://34.135.144.47:8080/predictions/vgg_16 -T docs/images/kitten_small.jpg
{
 "tabby": 0.530239462852478,
 "Egyptian_cat": 0.23884634673595428,
 "tiger_cat": 0.1343672275543213,
 "lynx": 0.06994840502738953,
 "Persian_cat": 0.009579462930560112

Right-Sizing Inference Expt: Sizing Approaches Compared

We compare 3 approaches listed below, w/resource configurations & operational models

• Max-sized approach

- Resource Configuration: Static with maximum-count maximum-sized x86+GPU compute nodes
- Operational model: Kubernetes Cluster set up to handle peak inference load for both models
- Dynamic fixed-size approach
 - Resource Configuration: Dynamic with variable-count maximum-sized x86+GPU compute nodes
 - Operational model: K8s Cluster Autoscaler w/x86+GPU node pool defined

Right-sized approach

- Resource Configuration: Dynamic with variable-count right-sized Arm compute nodes
- Operational model: Luna K8s smart node provisioner adding/removing right-sized cost-efficient nodes

Efficient DL Inferencing: Talk Outline

Efficient DL Inferencing: Resource Mgmt Challenges, Cost Challenges, Complexity Challenges

Efficient DL Inferencing: Talk Overview

Efficient DL Inferencing: Right-Sizing Approach

Experimental Setup for Evaluating Benefits of Right-Sizing Approach vs 2 other Sizing Approaches

Experimental Results for Sizing Approaches on 3 Cloud K8s Clusters

- OKE, GKE, EKS: Computing Resources Used, Accuracy & Latency Validation, Cost Comparison
- Operational Complexity for Sizing Approaches

Conclusion: Summary and One More Thing

OKE Right-Sizing Inference Expt: Computing Resources

K8s has 2 statically-allocated Ampere Arm CPU nodes for cluster mgmt, including Luna

Each is VM.Standard.A1.Flex shape w/2 OCPUs and 32GB [each: \$0.0680/hr]

TorchServe

- Each model's TorchServe deployment set to create minimum of 1 worker pod
- Note: Squeezenet1_1 worker pod memory size needed increase when GPU requested

Configuration	Vgg16 worker pod size	Vgg16 node instance type	Vgg16 max worker pod count	Squeezenet1_1 worker pod size	Squeezenet1_1 node instance type	Squeezenet1_ 1 max worker pod count
Max-sized	400m, 4GB, 1GPU	VM.GPU2.1 (P100 w/16GB)	3	400m, 2GB, 1GPU	VM.GPU2.1	3
Dynamic fixed-size	400m, 4GB, 1GPU	VM.GPU2.1 [\$1.275/hr]	3	400m, 2GB, 1GPU	VM.GPU2.1	3
Right-sized	400m, 4GB	VM.Standard.A1. Flex w/1 OCPU, 4GB [\$0.0160/hr]	4	400m; 1GB	VM.Standard.A1. Flex w/1 OCPU, 1GB [\$0.0115/hr]	4 SCale

OKE Right-Sizing Inference Expt: Accuracy & Latency Validation

Runs on right-sized and x86+GPU nodes produced same prediction results

Table shows 95 percentile E2E latency for models simultaneously handling peak load

- Run on right-sized and on x86+GPU configurations
- Both models meet desired E2E latency target (<=~0.5 secs) for presented workload & set up

Model	Right-sized 95% latency seconds	x86+GPU 95% latency seconds	
vgg16	0.2243	0.2453	
squeezenet1_1	0.2176	0.2975	

OKE Right-Sizing Inference Expt: Cost Compared at 4 op points

Table presents costs per hour for three approaches at four operating points

20

Figure shows ratios of Dynamic fixed-size and Right-sized costs to Max-sized costs

- When both models not at peak, Dynamic fixed-size configuration cost < Max-sized configuration cost
- In all cases, Right-sized configuration << Max-sized configuration cost, by > an order magnitude
- Note: legacy VM.GPU2.1(P100)=\$1.275/hr; current generation VM.GPU3.1(V100)=\$2.950/hr

Load	Max-sized \$/hr	Dynamic fixed-sized \$/hr	Right-sized \$/hr	1.000 —	Ratio Dynamic 1	îxed-size to Max-sized	Ratio Right-sized	I to Max-sized	
				0.750 —		_			
Both models idle	7.7860	2.6860	0.1635						
Both models peak	7.7860	7.7860	0.2460	0.500					
Vgg16 idle, squeezenet peak	7.7860	5.2360	0.1980	0.000 —	Both models idle	Both models peak	Vgg16 idle,	Vgg16 peak,	
Vgg16 peak, squeezenet idle	7.7860	5.2360	0.2115	-		1.4 in 16456 in • 200	Squeezenet peak	Squeezenet idle	

GKE Right-Sizing Inference Expt: Computing Resources

K8s has 2 statically-allocated Ampere Arm CPU nodes for cluster mgmt, including Luna

• Each is t2a-standard-2 shape w/2 VCPUs and 8GB [each: \$0.077/hr]

TorchServe

- Each model's TorchServe deployment set to create minimum of 1 worker pod
- Note: Squeezenet1_1 worker pod memory size needed increase when GPU requested

Configuration	Vgg16 worker pod size	Vgg16 node instance type	Vgg16 max worker pod count	Squeezenet1_1 worker pod size	Squeezenet1_1 node instance type	Squeezenet1_1 max worker pod count
Max-sized	400m, 4GB, 1GPU	n1-standard-2 + T4 GPU (16GB)	7	400m, 3GB, 1GPU	n1-standard-2 + T4 GPU	8
Dynamic fixed-size	400m, 4GB, 1GPU	n1-standard-2 + T4 GPU [\$0.445/hr]	7	400m, 3GB, 1GPU	n1-standard-2 + T4 GPU	8
Right-sized	400m, 4GB	T2a-standard-2 [\$0.077/hr]	4	400m; 1GB	T2a-standard-1 [\$0.0385/hr]	4 SCale

GKE Right-Sizing Inference Expt: Accuracy & Latency Validation

Runs on right-sized and x86+GPU nodes produced same prediction results

Table shows 95 percentile E2E latency for models simultaneously handling peak load

- Run on right-sized and on x86+GPU configurations
- Both models meet desired E2E latency target (<=~0.5 secs) for presented workload & set up

Model	Right-sized 95% latency seconds	x86+GPU 95% latency seconds	
vgg16	0.3011	0.3142	
squeezenet1_1	0.2996	0.3335	

GKE Right-Sizing Inference Expt: Cost Compared at 4 op points

Table presents **costs per hour** for three approaches at **four operating points** Figure shows ratios of Dynamic fixed-size and Right-sized costs to Max-sized costs

23

- When both models not at peak, Dynamic fixed-size configuration cost < Max-sized configuration cost
- In all cases, Right-sized configuration << Max-sized configuration cost, by > an order magnitude

Load	Max-sized \$/hr	Dynamic fixed-sized \$/hr	Right-sized \$/hr	Ratio Dynamic fixed-size to Max-sized Ratio Right-sized to Max-sized 1.000
Both models idle				0.750
	6.8290	1.0440	0.2695	0.500
Both models peak	6.8290	6.8290	0.6160	0.250 0
Vgg16 idle, squeezenet peak				0.000 — Both models idle Both models peak Vgg16 idle, Vgg16 peak, Squeezenet idle
	6.8290	4.1590	0.3850	Load
Vgg16 peak, squeezenet idle	6.8290	3.7140	0.5005	SCale

EKS Right-Sizing Inference Expt: Computing Resources

K8s has 2 statically-allocated Graviton2 Arm CPU nodes for cluster mgmt, including Luna

• Each is m6g.large shape w/2 VCPUs and 8GB [each: \$0.077/hr]

TorchServe

24

- Each model's TorchServe deployment set to create minimum of 1 worker pod
- Note: Squeezenet1_1 worker pod memory size needed increase when GPU requested

Configuration	Vgg16 worker pod size	Vgg16 node instance type	Vgg16 max worker pod count	Squeezenet1_1 worker pod size	Squeezenet1_1 node instance type	Squeezenet1_1 max worker pod count
Max-sized	400m, 4GB, 1GPU	g4dn.xlarge (T4 w/16GB)	4	400m, 3GB, 1GPU	g4dn.xlarge	4
Dynamic fixed-size	400m, 4GB, 1GPU	g4dn.xlarge [\$0.526/hr]	4	400m, 3GB, 1GPU	g4dn.xlarge	4
Right-sized	400m, 4GB	r6g.medium [\$0.0504/hr]	4	400m; 1GB	t4g.small [\$0.0168/hr]	4 SCALE

EKS Right-Sizing Inference Expt: Accuracy & Latency Validation

Runs on right-sized and x86+GPU nodes produced same prediction results

Table shows 95 percentile E2E latency for models simultaneously handling peak load

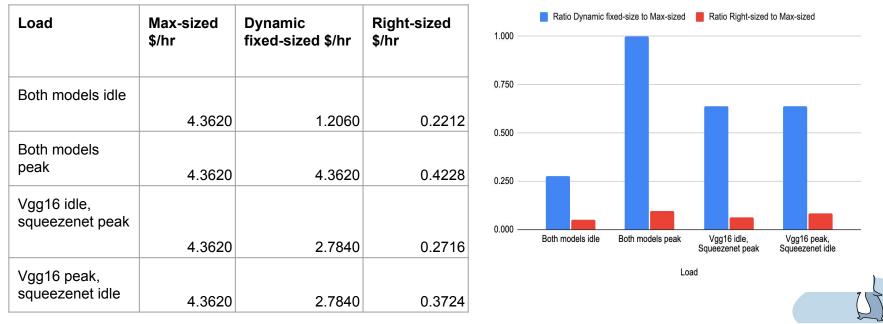
- Run on right-sized and on x86+GPU configurations
- Both models meet desired E2E latency target (<=~0.5 secs) for presented workload & set up

Model	Right-sized 95% latency seconds	x86+GPU 95% latency seconds
vgg16	0.4305	0.4452
squeezenet1_1	0.4436	0.4522

EKS Right-Sizing Inference Expt: Cost Compared at 4 op points

Table presents **costs per hour** for three approaches at **four operating points** Figure shows ratios of Dynamic fixed-size and Right-sized costs to Max-sized costs

- When both models not at peak, Dynamic fixed-size configuration cost < Max-sized configuration cost
- In all cases, Right-sized configuration << Max-sized configuration cost, by > an order magnitude



26

Right-Sizing Inference Expts: Operational Complexity Compared

Operational complexity analysis; entries marked "no" involve manual updates for changes

- Note: OCI discontinuing legacy VM.GPU2.1 is example of offerings update
- Right-sized configuration handled all three kinds of system changes automatically

Configuration	Automatically adapts to TorchServe max worker count needed changes	Automatically adapts to TorchServe worker size changes	Automatically handles cloud instance availability & offerings changes
Max-sized	no	no	no
Dynamic fixed-size	yes	no	no
Right-sized	yes	yes	yes

Efficient DL Inferencing: Talk Outline

Efficient DL Inferencing: Resource Mgmt Challenges, Cost Challenges, Complexity Challenges

Efficient DL Inferencing: Talk Overview

Efficient DL Inferencing: Right-Sizing Approach

Experimental Setup for Evaluating Benefits of Right-Sizing Approach vs 2 other Sizing Approaches

Experimental Results for Sizing Approaches on 3 Cloud K8s Clusters

Conclusion: Summary and One More Thing

Right-Sizing Inference: Summary

Have shown that Right-sizing

- Inference resources via using Elotl Luna
- Inference compute shapes by choosing Arm CPU-only compute

Reduces cloud resource costs significantly, measured at 4 operating pts for 3 vendors

• While reducing operational complexity for changes in inferencing resources & cloud offerings

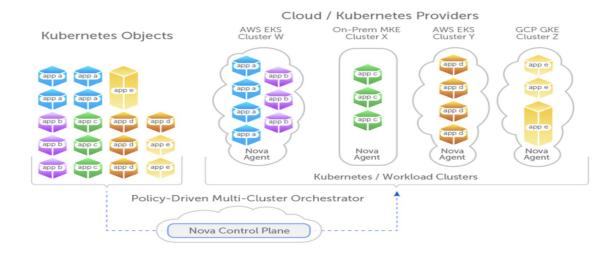
Right-Sizing Inference: One More Thing

K8s cluster that hosts DL serving workloads may be one of a K8s cluster set

• E.g., there may be separate K8s cluster w/GPU nodes that hosts DL training workloads

<u>Eloti Nova</u>, K8s cluster scheduler, places K8s workloads onto policy-selected cluster

• Luna and Nova can be used together to simplify K8s resource management



Please Give Right-Sizing a Try on Your Workloads!

Here are resources to get you started:

- <u>Elotl Luna</u>
- <u>Ampere Computing</u>
- OCI Ampere A1 Compute, OCI OKE
- GCP Ampere A1 Compute, GCP GKE
- EKS Graviton2 Compute, AWS EKS
- OCI Blog: Deep Learning inferencing at scale with Oracle Cloud A1 Compute with ElotI Luna

Thanks!

